Model of information technology of analytical support of new products

Bohdan Mykolaiovych Shtefan


Introduction. The problem of the development and use of modern tools of analytical decision support in the management of business processes is based on widespread use of new information technologies for the analysis of the generated alternatives and selection the best of them in terms of risk and uncertainty.

Purpose. The aim of the article is to develop the information technology model of providing the analytical process of new products with the consideration of the dynamics of market demand for the product and the effect of financial leverage.

Method (methodology). The methods that have been used in the article are as the following: method of process and context modeling, method of fuzzy logics, method of economic and mathematical modeling, method of system analysis and structural synthesis.

Results. It has been construcred a model of a computerized system for analytical support of innovative proposals for the evaluation of new products according to the efficiency of financial leverage with the consideration of the dynamics of demand. A mathematical software of the model is provided. The ways of its integration into the information system of the company are iverstigated. On the basis of concretized requirements it has been designed the overall structure of software implementation of model of forecast demand. It has been constructed the model of its implementation on the basis of product Mindjet MindManager 8.


analytical technology; forecast; demand; decision; new product; innovation offer; financial leverage

Full Text:



Liashko, D. Yu. (2009). Pryntsypy vyboru ta vyznachennia vytrat informatsiinykh system i tekhnolohii marketynhovoi diialnosti pidpryiemstva. Retrieved from: Ever/2009_2/l l.pdf.

Liashenko, O. & Babii, S. V. (2012). Novi informatsiino-analitychni tekhnolohii doslidzhennia system upravlinnia pidpryiemstvamy. Innovatsiina ekonomika, 3, 20-25.

Mytiai, O. V. (2011). Proektnyi analiz. Kyiv: Znannia.

Kerimov, V. Je. & Baturin, V. M. (n.d.). Finansovyj leveridzh kak jeffektivnyj instrument upravlenija finansovoj dejatel'nost'ju predprijatija. Retrieved from: php? ID=87.

Pospelov, D. A. (1986). Nechetkie mnozhestva v modeljah upravlenija i nsskustvennogo intellekta. Moscow: Nauka.

Rotshtejn, A. P. (1999). Intellektual'nye tehnologii identifikacii: nechetkie mnozhestva, geneticheskie algoritmy, nejronnye seti. Vinnica: «UNShERSUM-Vshnicja».

Gil-Aluja, J. (1999). Investment in uncertainty. Dordrecht : Kluwer Academic Publishers.

L'vov, D. S., Mednickij, V. G., Ovsienko, V. V., Ovsienko, Ju. V. (1995). Metodologicheskie problemy ocenivanija jeffektivnosti investicionnyh proektov. Jekonomika i matematicheskie metody, 2.

Nedosekin, A. O. (2000). Primenenie teorii nechetkih mnozhestv k zadacham upravlenija finansami. Audit i finansovyj analiz, 2, 20-33.

Kaufmann, A. & Gupta, M. M. (1985). Introduction to fuzzy arithmetic. New York: Reinhold.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c)


Articles are distributed under Creative Commons Attribution  International 4.0 (CC-BY-NC 4.0) 

Science Works Journal "Ekonomichnyy analiz"

ISSN 1993-0259 (Print)  ISSN 2219-4649 (Online) DOI: 10.35774/econa

© West Ukrainian National University

© «Ekonomichnyy analiz», 2007-2023